Distributed Differential Privacy By Sampling
نویسنده
چکیده
In this paper, we describe our approach to achieve distributed differential privacy by sampling alone. Our mechanism works in the semihonest setting (honest-but-curious whereby aggregators attempt to peek at the data though follow the protocol). We show that the utility remains constant and does not degrade due to the variance as compared to the randomized response mechanism. In addition, we show smaller privacy leakage as compared to the randomized response mechanism.
منابع مشابه
Differential Privacy By Sampling
In this paper we present the Sampling Privacy mechanism for privately releasing personal data. Sampling Privacy is a sampling based privacy mechanism that satisfies differential privacy.
متن کاملPrivacy Preserving Stream Analytics: The Marriage of Randomized Response and Approximate Computing
How to preserve users’ privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three properties: (i) Privacy: zero-knowledge privacy guarantees for users, a privacy bound tighter than the st...
متن کاملExplorer PrivApprox : Privacy - Preserving Stream Analytics
How to preserve users’ privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three important properties: (i) Privacy: zero-knowledge privacy guarantee for users, a privacy bound tighter th...
متن کاملPrivApprox: Privacy-Preserving Stream Analytics
How to preserve users’ privacy while supporting high-utility analytics for low-latency stream processing? To answer this question: we describe the design, implementation and evaluation of PRIVAPPROX, a data analytics system for privacy-preserving stream processing. PRIVAPPROX provides three important properties: (i) Privacy: zero-knowledge privacy guarantee for users, a privacy bound tighter th...
متن کاملOn the Benefits of Sampling in Privacy Preserving Statistical Analysis on Distributed Databases
We consider a problem where mutually untrusting curators possess portions of a vertically partitioned database containing information about a set of individuals. The goal is to enable an authorized party to obtain aggregate (statistical) information from the database while protecting the privacy of the individuals, which we formalize using Differential Privacy. This process can be facilitated b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1706.04890 شماره
صفحات -
تاریخ انتشار 2017